Dynamic regulation of acid-sensing ion channels by extracellular and intracellular modulators.

نویسندگان

  • Tian-Le Xu
  • Zhi-Gang Xiong
چکیده

Changes of extracellular pH values can have profound effects on neuronal function. For example, the low pH (also called acidosis) generated in brain ischemia causes acute neuronal injury. For years the receptors that detect pH variations surrounding neurons and their physiological/pathological importance remain uncertain. The recent finding that acidosis activates a distinct family of membrane ion channels, the acid-sensing ion channels (ASICs) in both peripheral and central neurons has dramatically changed the view of acidosis-associated signaling and provided a new strategy for therapeutic inventions. Although proton is the only known agonist for the activation of ASICs, a variety of extracellular and intracellular signaling molecules can modulate the activities of ASICs and have profound influence on the functions of these channels in both physiological and pathological processes. The goal of this article is therefore to provide a comprehensive review of the modulators of ASICs that adapt ASIC activity to changes of extracellular and intracellular environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracellular Zinc Protects Against Acidosis-Induced Injury of Cells Expressing Ca -Permeable Acid-Sensing Ion Channels

Acidosis is a common feature of neurological conditions including brain ischemia, epileptic seizures, and neurotrauma. Activation of Ca -permeable acid-sensing ion channels (ASIC1a) is involved in acidosis-mediated ischemic brain injury. Zn is a divalent cation concentrated in nerve terminals in various brain regions, and is released into the extracellular space during excitatory stimulation. O...

متن کامل

Extracellular zinc protects against acidosis-induced injury of cells expressing Ca2+-permeable acid-sensing ion channels.

Acidosis is a common feature of neurological conditions including brain ischemia, epileptic seizures, and neurotrauma. Activation of Ca(2+)-permeable acid-sensing ion channels (ASIC1a) is involved in acidosis-mediated ischemic brain injury. Zn(2+) is a divalent cation concentrated in nerve terminals in various brain regions, and is released into the extracellular space during excitatory stimula...

متن کامل

Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells.

Carotid body chemoreceptors sense hypoxemia, hypercapnia, and acidosis and play an important role in cardiorespiratory regulation. The molecular mechanism of pH sensing by chemoreceptors is not clear, although it has been proposed to be mediated by a drop in intracellular pH of carotid body glomus cells, which inhibits a K+ current. Recently, pH-sensitive ion channels have been described in glo...

متن کامل

pH sensing and regulation in cancer

Cells maintain intracellular pH (pHi) within a narrow range (7.1-7.2) by controlling membrane proton pumps and transporters whose activity is set by intra-cytoplasmic pH sensors. These sensors have the ability to recognize and induce cellular responses to maintain the pHi, often at the expense of acidifying the extracellular pH. In turn, extracellular acidification impacts cells via specific ac...

متن کامل

Effect of crude Venom of Odonthobuthus doriae scorpion in cell culture using ion channel modulators

Scorpion venom toxicity is one of the major medical concerns from old years, due to its influence on human activities and health. From many years ago a lot of researches established to examine different aspects of venom toxicity and its effects on different organs. During these years researchers are doing more specific studies on the cytotoxicity of scorpion venom. In Iran, Odonthobuthus doriae...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current medicinal chemistry

دوره 14 16  شماره 

صفحات  -

تاریخ انتشار 2007